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Abstract

A curious feature of complex scattering potentials v(x) is the appearance
of spectral singularities. We offer a quantitative description of spectral
singularities that identifies them with an obstruction to the existence of
a complete biorthonormal system consisting of the eigenfunctions of the
Hamiltonian operator, i.e., − d2

dx2 + v(x), and its adjoint. We establish the
equivalence of this description with the mathematicians’ definition of spectral
singularities for the potential v(x) = z−δ(x+a)+z+δ(x−a), where z± and a are
respectively complex and real parameters and δ(x) is the Dirac delta function.
We offer a through analysis of the spectral properties of this potential and
determine the regions in the space of the coupling constants z± where it admits
bound states and spectral singularities. In particular, we find an explicit bound
on the size of certain regions in which the Hamiltonian is quasi-Hermitian and
examine the consequences of imposing PT -symmetry.

PACS number: 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of non-Hermitian Hamiltonians in theoretical physics has a long history. It extends
from early attempts to construct divergence-free relativistic quantum field theories [1] to
more practical and successful applications in nuclear and atomic physics [2] and particularly
quantum optics [3, 4]. During the past ten years there has been a renewed interest in the
study of a special class of non-Hermitian Hamiltonians that possess a real spectrum. The
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best-known examples are the PT -symmetric Hamiltonians [5] such as p2 + ix3. These belong
to the wider class of pseudo-Hermitian Hamiltonians H whose adjoint H † is given by

H † = ηHη−1, (1)

for some Hermitian invertible operator η [6, 7]. What makes pseudo-Hermitian Hamiltonians
interesting is that they are Hermitian with respect to a possibly indefinite inner product3,
namely

〈·, ·〉η := 〈·|η·〉, (2)

where 〈·|·〉 is the inner product of the Hilbert space in which all the relevant operators
act. Most of the recent work on the subject is concentrated on a particular class of pseudo-
Hermitian Hamiltonians, called quasi-Hermitian [8], that satisfies (1) for some positive-definite
(metric) operator η. In this case, (2) is a positive-definite inner product, and H becomes
Hermitian provided that we define the physical Hilbert space of the system using the inner
product 〈·, ·〉η, [9, 10]. This allows for formulating the pseudo-Hermitian representation of
quantum mechanics in which PT -symmetric as well as non-PT -symmetric quasi-Hermitian
Hamiltonians can be employed to describe unitary quantum systems [10]. The techniques
developed in this framework have so far found interesting applications in relativistic quantum
mechanics [11], quantum cosmology [12], quantum field theory [13], bound-state scattering
[14] and classical electrodynamics [15]. But these developments do not undermine the
importance of the requirement that the observables of a unitary quantum system must be
Hermitian with respect to the inner product of the physical Hilbert space [10].

Among the properties of Hermitian operators that make them indispensable in quantum
mechanics is their diagonalizability. For Hermitian and more generally normal operators
(those commuting with their adjoint), diagonalizability is equivalent to the existence of an
orthonormal basis consisting of the eigenvectors of the operator. This is more commonly
referred to as completeness. For a non-normal (and hence non-Hermitian) operator H,
diagonalizability of H means the existence of a basis B† consisting of (scattering and bound-
state) eigenfunctions of the adjoint operator H † that is biorthonormal to some basisB consisting
of the eigenfunctions of H, i.e., B and B† form a biorthonormal system of the Hilbert space
[10]. For brevity we shall call such a biorthonormal system a biorthonormal eigensystem
for H.

Diagonalizability is a weaker condition than Hermiticity, but diagonalizable operators with
a real and discrete spectrum can be related to Hermitian operators via similarity transformations
[7]. This in turn implies that they are quasi-Hermitian [8]. The situation is more complicated
when the spectrum is continuous. A serious difficulty is the emergence of spectral singularities
that conflict with the diagonalizability of the operator in question [16]. The aim of this paper
is to elucidate the mechanism by which spectral singularities obstruct the construction of
a biorthonormal eigensystem for the operator. We shall achieve this aim by obtaining a
quantitative measure of lack of a biorthonormal eigensystem and comparing the latter with the
mathematical condition for the presence of spectral singularities that is based on the behavior
of the Jost functions. In order to clarify the meaning and consequences of spectral singularities
we shall offer a detailed investigation of the spectral properties of the Hamiltonian operators
of the form

H = − h̄2

2m

d2

dx2
+ ζ+δ(x − α) + ζ−δ(x + α), (3)

where ζ± are complex coupling constants, α is a real parameter and δ(x) stands for the Dirac
delta function.
3 This means that 〈·, H ·〉η = 〈H ·, ·〉η .
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An alternative mechanism that can make a non-Hermitian operator non-diagonalizable is
the emergence of exceptional points. These correspond to degeneracies where both eigenvalues
and eigenvectors coalesce [17]. Exceptional points have various physical implications
[3, 4, 18]. But they must not be confused with spectral singularities. Unlike exceptional points
that can be present for operators with a discrete spectrum (in particular matrix Hamiltonians),
spectral singularities are exclusive features of certain operators having a continuous part
in their spectrum. As we will see in sections 2 and 3, for an operator having a spectral
singularity we can still define two linearly independent (scattering) eigenfunctions for each
eigenvalue, nevertheless it is impossible to construct a biorthonormal eigensystem for the
operator. To the best of our knowledge, physical meaning of spectral singularities and their
possible applications have not been previously studied. This is the subject of [19] where the
results of the present paper have been used to develop a physical interpretation for spectral
singularities.

Reference [20] uses the mathematical theory of spectral singularities developed in
[21, 22] to emphasize their relevance to the recent attempts at using complex scattering
potentials to define unitary quantum systems. The results of [20] are, however, confined to
potentials defined on the half-line x � 0, where the Hamiltonian operator acts in the Hilbert
space of square-integrable functions ψ : [0,∞) → C satisfying the boundary condition
ψ(0) = 0. Furthermore, due to the nature of the concrete potentials studied in [20], it has not
been possible to construct bases of the corresponding Hamiltonian and its adjoint and show
by explicit calculation how the presence of a spectral singularity obstructs the existence of a
biorthonormal eigensystem. This is quite essential, because for the cases that the spectrum is
real, the availability of a biorthonormal eigensystem is a necessary condition for the existence
of an associated metric operator and the quasi-Hermiticity of the Hamiltonian [10].

The only thoroughly studied example of a complex scattering potential that is defined on
the whole real line and can lead to spectral singularities is the single-delta-function potential
with a complex coupling [24]. The Hamiltonian operator is given by (3) with α = ζ− = 0.
It develops a spectral singularity if and only if the coupling constant (ζ+) is imaginary. In
particular, for the cases that the real part of ζ+ is positive, the bound states are also lacking and
the Hamiltonian is quasi-Hermitian. The complex single-delta-function potentials provide a
class of manifestly non-PT -symmetric Hamiltonians with a continuous spectrum that happen
to be quasi-Hermitian. An advantage of considering complex double-delta-function potentials
is that their space of coupling constants has a subspace, given by ζ+ = ζ ∗

−, where the
Hamiltonian is PT -invariant. Therefore, these potentials provide an opportunity to investigate
the significance of PT -symmetry [23].

The spectral properties of the PT -symmetric double- and multiple-delta function
potentials have been studied in [25–28]. The results are, however, confined to the determination
of the (scattering and bound-state) spectrum of these potentials, and no attempt has been made
to decide if these potentials lead to spectral singularities.

In this present paper, we will try to obtain a map of the space C2 = R4 of the coupling
constants ζ± that specifies the regions corresponding to the existence of bound states and
spectral singularities. We will in particular investigate the intersection of these regions with
the two-dimensional PT -symmetric subspace: ζ− = ζ ∗

+ . The following is an outline of the
results we report in this paper. In section 2, we obtain an explicit quantitative measure of
the existence of biorthonormal eigensystems and compare the latter with the known condition
of the presence of spectral singularities. Here we also provide a useful characterization of
spectral singularities and bound states for complex scattering potentials. Section 3 treats the
spectral properties of the double-delta function potentials. It consists of four subsections in
which we obtain the regions in the space of coupling constants where spectral singularities
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and bound states exist, find their location in the spectrum of the operator, and determine a
lower bound on the size of certain regions in C2 where the operator (3) is quasi-Hermitian.
Section 4 presents our concluding remarks.

2. Spectral singularities

Consider a complex-valued potential v : R → C depending on a set of complex coupling
constants z1, z2, . . . , zd such that v∗ is obtained by complex conjugating the coupling constants
in the expression for v. Suppose that v decays rapidly4 as |x| → ∞ and that the spectrum of
the corresponding Hamiltonian operator,

H = − d2

dx2
+ v(x), x ∈ R, (4)

is the set of nonnegative real numbers5. Let ψ�z
ak(x) denote the (generalized) eigenfunctions

of H, i.e., linearly independent bounded solutions of

Hψ�z
ak(x) = k2ψ�z

ak(x), (5)

where k ∈ R+ and a ∈ {1, 2} are respectively the spectral and degeneracy6 labels and
�z := (z1, z2, . . . , zd).

By definition, H is diagonalizable, if ψ�z
ak(x) together with a set of (generalized)

eigenfunctions φ�z
ak(x) of H † form a complete biorthonormal system

{
ψ�z

ak, φ
�z
ak

}
, i.e., they

satisfy

〈
φ�z

ak

∣∣ψ�z
bq

〉 = δab δ(k − q),

2∑
a=1

∫ ∞

0
dk

∣∣ψ�z
ak

〉〈
φ�z

ak

∣∣ = 1, (6)

where 〈·|·〉 is the usual L2-inner product. The biorthonormality relations (6) imply the spectral
representation of H,

H =
2∑

a=1

∫ ∞

0
dk k2

∣∣ψ�z
ak

〉〈
φ�z

ak

∣∣, (7)

as well as the eigenfunction expansion:

f (x) =
2∑

a=1

∫ ∞

0
dk fak ψ�z

ak(x), (8)

where f : R → C is a test function and

fak := 〈
φ�z

ak

∣∣f 〉
. (9)

Because H † = − d2

dx2 + v(x)∗, ψ�z∗
ak are the eigenfunctions of H †. This in turn means that

φ�z
ak must be a linear combination of ψ�z∗

ak , i.e., there are Jab ∈ C satisfying

φ�z
ak =

2∑
b=1

Jabψ�z∗
bk. (10)

4 For the purpose of the present paper, we assume that as |x| → ∞ we have |v(x)| � exp[−ε
√|x|] for some ε ∈ R+.

As far as the general properties related with spectral singularities, all the results hold for the less rapidly decaying
potentials that satisfy

∫ ∞
−∞(1 + |x|)|v(x)| < ∞. See [29, 30].

5 We shall consider the more general case that the spectrum involves eigenvalues (with square-integrable
eigenfunctions) at the end of this section.
6 The spectrum is necessarily doubly degenerate.
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In view of (6), there must exist Kab ∈ C such that〈
ψ�z∗

ak

∣∣ψ�z
bq

〉 = Kabδ(k − q). (11)

Furthermore, if we respectively denote by I, J and K the (2 × 2) identity matrix and the
matrices with entries Jab and Kab, we find J ∗K = I . In particular, K must be an invertible
matrix and Jab = K−1∗

ab
. We can write this relation in the form

Jab = K̃∗
ab

det(K)∗
, (12)

where K̃ is the transpose of the matrix of cofactors of K. It satisfies( 〈
ψ�z∗

2k

∣∣ψ�z
2q

〉 −〈
ψ�z∗

1k

∣∣ψ�z
2q

〉
−〈

ψ�z∗
2k

∣∣ψ�z
1q

〉 〈
ψ�z∗

1k

∣∣ψ�z
1q

〉
)

= K̃ δ(k − q).

We can use (12) and (10) to express (9) as

fak = 1

det(K)

2∑
b=1

K̃ab

〈
ψ�z∗

bk

∣∣f 〉
. (13)

According to this equation if det(K) = 0, the eigenfunction expansion (8) breaks down the
eigenfunctions ψ�z

ak do not form a complete set and H is not diagonalizable. We identify this
situation with the presence of spectral singularities:

spectral singularities are points k2 of the continuous spectrum of H where det(K) = 0.

(14)

Because of (complex) analyticity property of the eigenfunctions ψ�z
ak, det(K) is an analytic

function of k. Therefore, the (real) zeros of det(K) are isolated points forming a countable
subset of the real line. Moreover, because v is a bounded function decaying rapidly away
from zero, the eigenfunctions tend to plane waves as k becomes large. This shows that det(K)

does not have arbitrarily large zeros (for fixed �z). As a result, the zeros of det(K) are not only
isolated but actually finite in number. In other words, depending on the values of the coupling
constants z1, z2, . . . , zd, det(K) may have no (real) zeros in which case spectral singularities do
not arise and H is diagonalizable, or a finite number of (non-vanishing real) zeros κ1, κ2, . . . , κμ

in which case κ2
1 , κ2

2 , . . . , κ2
μ are spectral singularities and H is not diagonalizable.

In general the space of coupling constants can be divided into two regions, namely
the singular region where H has spectral singularities and the regular region where it is
diagonalizable.

In the mathematics literature a spectral singularity is defined as follows:

Definition 1. An element E
 of the (continuous) spectrum of H is called a spectral singularity
if the integral kernel of the resolvent operator: (H − E)−1, i.e., the Green’s function
〈x|(H − E)−1|y〉, is an unbounded function in every small open neighborhood of E
, but
E
 is not an eigenvalue of H with a square-integrable eigenfunction [30]7.

There is a rather general theory of spectral singularities for the differential operators of the
form (4) where the spectral singularities are characterized as the real zeros of certain analytic
functions [21, 22, 29, 31–33]. For the case that the operator acts in L2(R), this is the
Wronskian,

W [ψk−, ψk+] := ψk−(x)ψ ′
k+(x) − ψ ′

k−(x)ψk+(x) = ψk−(0)ψ ′
k+(0) − ψ ′

k−(0)ψk+(0), (15)

7 Therefore spectral singularities are certain poles of 〈x|(H − E)−1|y〉.
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of the Jost solutions ψk± of the eigenvalue equation Hψ = k2ψ . These are defined in terms
of their asymptotic behavior

ψk−(x) → e−ikx for x → −∞, ψk+(x) → eikx for x → ∞. (16)

More specifically, we have [30]

spectral singularities are the real (non-vanishing) zeros of W [ψk−, ψk+]. (17)

This description of spectral singularities seems to differ from the one given in (14). In section 3,
we demonstrate the equivalence of the two descriptions for the double-delta function potential
by explicit calculations. The following calculation shows how the description (14) relates to
definition 1. Using (6), (7), (10) and (12), we have

〈x|(H − E)−1|y〉 =
2∑

a=1

∫ ∞

0
dk

ψ�z
ak(x)φ�z

ak(y)∗

k2 − E
=

2∑
a,b=1

∫ ∞

0
dk

J ∗
ab

ψ�z
ak(x)ψ�z∗

bk(y)∗

k2 − E

=
2∑

a,b=1

∫ ∞

0
dk

K̃abψ�z
ak(x)ψ�z∗

bk(y)∗

det(K)(k2 − E)
.

In the remainder of this section we provide a useful characterization of the spectral
singularities and bound states.

Because |v(x)| decays rapidly as |x| → ∞, solutions of (5) have the asymptotic behavior:

ψ�z
ka(x) → A± eikx + B± e−ikx for x → ±∞, (18)

where A± and B± are possibly k-dependent complex coefficients. If we denote the coefficients
A± and B± for the Jost solutions ψk± by A±

± and B±
± , we can express (16) as

A+
+ = B−

− = 1, A−
− = B+

+ = 0. (19)

Next, we let M = (Mab) be the possibly k-dependent (2×2) transfer matrix [34] satisfying(
A+

B+

)
= M

(
A−
B−

)
, (20)

and use this relation and equations (18) and (19) to obtain

A+
− = M22

det M
, B+

− = − M21

det M
, A−

+ = M12, B−
+ = M22. (21)

Inserting these equations in (18), we find

ψk−(x) → M12 eikx + M22 e−ikx for x → ∞, (22)

ψk+(x) → M22 eikx − M21 e−ikx

det M
for x → −∞. (23)

Because according to Abel’s theorem [35], the Wronskian of solutions of (5) is independent
of x, we can use the asymptotic formulae for the Jost solutions to compute their Wronskian.
We use equations (16), (22) and (23) to perform this calculation first for x → ∞ and then for
x → −∞. This gives

W [ψk−, ψk+] = 2ikM22(k), (24)

W [ψk−, ψk+] = 2ikM22(k)

det M(k)
, (25)

6
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where we have made the k-dependence of M22 and M explicit. A direct consequence of (24)
and (25) is

det M(k) = 1. (26)

More importantly, we have the following characterization of spectral singularities that follows
from (17) and (24).

spectral singularities are given by k2 where k is a (non-vanishing) real zero of M22(k).

(27)

Finally, consider the more general case that the Hamiltonian operator (4) has, in addition to
a continuous spectrum corresponding to k ∈ R+, a possibly complex discrete spectrum. The
latter corresponds to the square-integrable solutions of (5) that represent bound states. It is
not difficult to show that the spectral labels corresponding to these bound states are also zeros
of M22(k), but unlike the zeros associated with the spectral singularities these must have a
positive imaginary part. In other words, we have the following characterization of the bound
states.

Bound state energies are given by k2 where k is a zero of M22(k) with Im(k) > 0. (28)

3. The double-delta function potential

3.1. Eigenfunctions

Consider the time-independent Schrödinger equation[
− h̄2

2m

d2

dx2
+ ζ+δ(x − α) + ζ−δ(x + α)

]
ψ = Eψ. (29)

Let � be an arbitrary length scale and introduce the dimensionless quantities

z± := 2m�ζ±
h̄2 , x := x

�
, a := α

�
, E := 2m�2E

h̄2 . (30)

Then (29) takes the form

−ψ ′′ + [z+δ(x − a) + z−δ(x + a)]ψ = Eψ. (31)

We can write solutions of (31) as

ψ(x) =
⎧⎨
⎩

ψ−(x) for x < −a,

ψ0(x) for |x| � a,

ψ+(x) for x > a,

(32)

ψν(x) = Aν eikx + Bν e−ikx, ν ∈ {−, 0, +}, (33)

where k := √
E and without loss of generality we require that the principal argument of k

belongs to [0, π).
To determine the matching conditions at x = ±a, we demand that ψ be continuous, i.e.,

ψ−(−a) = ψ0(−a), ψ0(a) = ψ+(a). (34)

Furthermore, we integrate both sides of (31) over the intervals [∓a − ε,∓a + ε] and take the
limit ε → 0 in the resulting formulae to find

ψ−′
(−a) − ψ0′

(−a) + z−ψ0(−a) = 0, ψ0′
(a) − ψ+′

(a) + z+ψ
0(a) = 0. (35)

7
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Introducing

w± := iz±
2k

, (36)

and inserting (32) and (33) into (34) and (35) yield the desired matching conditions that we
can write in the form(

A−
B−

)
=

(
1 + w− w−e2iak

−w−e−2iak 1 − w−

)(
A0

B0

)
,

(
A+

B+

)
=

(
1 − w+ −w+e−2iak

w+e2iak 1 + w+

)(
A0

B0

)
.

(37)

In light of these relations, the matrix M satisfying (20) reads

M =
(

1 − w− − w+ + (1 − e−4iak)w−w+ 2iw−w+ sin(2ak) − w−e2iak − w+e−2iak

−2iw−w+ sin(2ak) + w−e−2iak + w+e2iak 1 + w− + w+ + (1 − e4iak)w−w+

)
.

(38)

It is easy to check that indeed det(M) = 1.
Next, we let �z stand for (z−, z+) and use ψ�z

1k and ψ�z
2k to denote the eigenfunctions obtained

by setting A0 = (2π)−1/2, B0 = 0 and A0 = 0, B0 = (2π)−1/2, respectively. Then

ψ�z
1k(x) = (2π)−1/2 ×

⎧⎨
⎩

(1 + w−) eikx − w−e−ik(x+2a) for x < −a,

eikx for |x| � a,

(1 − w+) eikx + w+e−ik(x−2a) for x > a,

(39)

ψ�z
2k(x) = (2π)−1/2 ×

⎧⎨
⎩

(1 − w−) e−ikx + w−eik(x+2a) for x < −a,

e−ikx for |x| � a,

(1 + w+) e−ikx − w+eik(x−2a) for x > a.

(40)

We can construct a set of eigenfunctions of H † by taking z± to z∗
± or w± to −w∗

± in these
relations. They are given by

ψ�z∗
1k(x) = (2π)−1/2 ×

⎧⎨
⎩

(1 − w∗
−) eikx + w∗

−e−ik(x+2a) for x < −a,

eikx for |x| � a,

(1 + w∗
+) eikx − w∗

+e−ik(x−2a) for x > a,

(41)

ψ�z∗
2k(x) = (2π)−1/2 ×

⎧⎨
⎩

(1 + w∗
−) e−ikx − w∗

−eik(x+2a) for x < −a,

e−ikx for |x| � a,

(1 − w∗
+) e−ikx + w∗

+eik(x−2a) for x > a.

(42)

3.2. Characterization of spectral singularities

In this subsection, we use (14) to determine the spectral singularities of the double-delta-
function potential. This requires computes 〈ψ�z∗

a,k|ψ�z
b,q〉 for all a, b ∈ {1, 2}. Using (39) and

(40) and the identities∫ ∞

ν

eiμx dx = πδ(μ) +
ieiμν

μ
,

∫ ν

−∞
eiμx dx = πδ(μ) − ieiμν

μ
,

we find (〈
ψ�z∗

1k

∣∣ψ�z
1q

〉 〈
ψ�z∗

1k

∣∣ψ�z
2q

〉
〈
ψ�z∗

2k

∣∣ψ�z
1q

〉 〈
ψ�z∗

2k

∣∣ψ�z
2q

〉
)

= δ(k − q)K, (43)

8
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where K = (Kij ) is a (2 × 2) matrix with entries

K11 = K22 = 1 − w2
− − w2

+ = 1 +
z2
− + z2

+

4k2
, (44)

K12 = w−(1 − w−) e2iak − w+(1 + w+) e−2iak

= (4k2)−1[iz−(2k − iz−) e2iak − iz+(2k + iz+) e−2iak], (45)

K21 = −w−(1 + w−) e−2iak + w+(1 − w+) e2iak

= (4k2)−1[−iz−(2k + iz−) e−2iak + iz+(2k − iz+) e2iak]. (46)

In the PT -symmetric case, where z+ = z∗
− =: z �= 0,K is a real matrix, and

K11 = K22 = 1 +
Re(z2)

2k2
, (47)

K12 = (2k2)−1 Im[z(2k + iz) e−2iak], (48)

K21 = (2k2)−1 Im[z(−2k + iz) e2iak]. (49)

The fact that K is not generally diagonal shows that
{
ψ�z

ak, ψ
�z∗
bq

}
is not a biorthonormal

system. To construct the basis biorthonormal to
{
ψ�z

ak

}
we transform ψ�z∗

ak according to

ψ�z∗
ak → φ�z

ak :=
2∑

b=1

Jabψ�z∗
bk,

and fix the coefficients Jab by demanding that
{
ψ�z

ak, φ
�z
ak

}
be a biorthonormal system. As

we explained in section 2, in terms of K this condition takes the form δab = ∑2
c=1 J ∗

acKcb.
Therefore, a basis biorthonormal to

{
ψ�z

ak

}
exists provided that the matrix K is invertible, and

the matrix J of coefficients Jab has the form J = K−1∗.
The nonzero real values of k for which K is a singular matrix give the spectral singularities

of H. These are the non-vanishing real zeros of det(K) that we can obtain using (44)–(46):

det(K) = 1 +
z2
− + z2

+

4k2
+

z2
−z2

+

8k4
+

z−z+

2k2

[(
1 − z−z+

4k2

)
cos(4ak) +

(
z− + z+

2k

)
sin(4ak)

]
= 0.

(50)

If either z− = 0 and z := z+ or z+ = 0 and z := z−, this equation reduces to

1 +
z2

4k2
= 0.

Therefore, for pure imaginary z there is a spectral singularity located at k = ±iz/2 = |z|/2.
This agrees with the results for the single-delta-function potential [24].

For the PT -symmetric case (z+ = z∗
− =: z), we have

det(K) = 1 +
Re(z2)

2k2
+

|z|4
8k4

+
|z|2
2k2

[(
1 − |z|2

4k2

)
cos(4ak) +

(
Re(z)

k

)
sin(4ak)

]
= 0. (51)

In particular if z is purely imaginary, i.e., z = iσ for some σ ∈ R,

det(K) = cos2(2ak) +

(
1 − σ 2

2k2

)2

sin2(2ak). (52)

Therefore, det(K) = 0 iff cos(2ak) = 0 and k = |σ |/√2. This implies that there is a spectral
singularity for k = |σ |/√2 = |z|/√2 iff σ takes one of the following values

σn := π(2n + 1)

2
√

2a
, n ∈ Z. (53)

9



J. Phys. A: Math. Theor. 42 (2009) 125303 A Mostafazadeh and H Mehri-Dehnavi

In summary, for the case that z+ = −z− =: z is purely imaginary, H has a single spectral
singularity given by

E
 = σ 2
n

2
=

[
(2n + 1)π

4a

]2

, (54)

if z = iσn for some n ∈ Z. Otherwise it does not have any spectral singularities.
Next, consider the general PT -symmetric case where z+ = z∗

− =: z, and z need not be
purely imaginary. In this more general case, we rewrite (51) in the form

det(K) = |f (z, a, k)|2, (55)

where

f (z, a, k) := |z|2 sin(2ak)

2k2
+ e−2iak

(
Re(z)

k
− i

)
. (56)

It is easy to compute

Re[f (z, a, k)] =
( |z|2

2k2
− 1

)
sin(2ak) +

Re(z)

k
cos(2ak), (57)

Im[f (z, a, k)] = −
[

cos(2ak) +
Re(z)

k
sin(2ak)

]
. (58)

In view of (55), det(K) = 0 iff Re[f (z, a, k)] = Im[f (z, a, k)] = 0. Imposing
Im[f (z, a, k)] = 0, we have

cos(2ak) = −Re(z)

k
sin(2ak), (59)

which in particular implies sin(2ak) �= 0. Moreover, cos(2ak) = 0 iff Re(z) = 0. In light of
sin(2ak) �= 0 and (59), Re[f (z, a, k)] = 0 gives

−Re(z)2 + Im(z)2 = 2k2. (60)

This implies that if |Re(z)| � |Im(z)|, there is no spectral singularity.
Next, we solve (60) for k to obtain

k =
√

−Re(z)2 + Im(z)2

2
, (61)

and express (59) as

Re(z) = −k cot(2ak). (62)

Inserting (61) into (62) yields a necessary and sufficient condition for the existence of a spectral
singularity, namely

2 Re(z) tan
(
a
√

2[−Re(z)2 + Im(z)2]
)

+
√

2[−Re(z)2 + Im(z)2] = 0. (63)

Introducing the variables

r := 2aRe(z), s := 2aIm(z), t := a
√

2[−Re(z)2 + Im(z)2], (64)

we can express (63) in the form

r = −t cot t, (65)

and establish

s = ±t
√

1 + csc2 t . (66)

10
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Figure 1. Curves in the r–s plane giving the location of the spectral singularities for the general
PT -symmetric double-delta function potential. The dashed lines are the asymptotes s = ±r .
The intersection of the curves with the s-axis corresponds to the spectral singularities given by
equation (54).

Figure 1 shows a plot of the parametric curve defined by (65) and (66). It consists of an infinite
set of disjoint open curves with asymptotes s = ±r in the r–s plane. The points on these
curves correspond to the values of the coupling constant z for which a spectral singularity
appears.

Next, consider the general not necessarily PT -symmetric case. Generalizing our
treatment of the PT -symmetric case, we use (50) to factorize det(K) as

det(K) = f−(z−, z+, a, k)f+(z−, z+, a, k), (67)

where

f±(z−, z+, a, k) := u

2k2
sin(2ak) + e±2iak

(
v

k
± i

)
, u := z−z+, v := z− + z+

2
.

(68)

Therefore, det(K) = 0 if and only if at least one of the f±(z−, z+, a, k) vanishes.
Let us abbreviate f−(z−, z+, a, k) as f (k), i.e., set

f (k) := u

2k2
sin(2ak) + e−2iak

(
v

k
− i

)
. (69)

Then it is easy to see that f+(z−, z+, a, k) = −f (−k). Therefore, the positive zeros of
f+(z−, z+, a, k) are identical with the absolute value of the negative zeros of f−(z−, z+, a, k).
In other words, the spectral singularities are given by positive and negative real zeros of f (k).
Another interesting property of f (k) is that it satisfies

f (k) = −ie−2iak[1 + w− + w+ + w−w+(1 − e4aik)] = −ie−2iakM22(k), (70)

11
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where M22(k) is the the entry of the matrix M of (38) with the row and column labels 2.
According to (70) the spectral singularities are the non-vanishing real zeros of M22(k). This
establishes the equivalence of (14) and (17) for the double-delta function potentials.

In order to characterize the real zeros of f (k), we set the real and imaginary parts of the
right-hand side of (69) equal to zero. This gives(

−1 +
Re(u)

2k2
+

Im(v)

k

)
sin(2ak) +

(
Re(v)

k

)
cos(2ak) = 0, (71)(

Im(u)

2k2
− Re(v)

k

)
sin(2ak) +

(
Im(v)

k
− 1

)
cos(2ak) = 0. (72)

Because sin(2ak) and cos(2ak) cannot vanish simultaneously, these equations hold provided
that the matrix of coefficients of sin(2ak) and cos(2ak) is singular. Equating the determinant
of this matrix to zero and simplifying the resulting equation, we find

g(k) := k3 − 2 Im(v)k2 +

(
−Re(u)

2
+ |v|2

)
k +

1

2
[Re(u)Im(v) − Re(v)Im(u)] = 0. (73)

Because g is a real cubic polynomial, it always has at least one real root κ . If κ �= 0, E
 = κ2

is a spectral singularity. Expressing κ as a function of u and v and inserting it into say (72)
we find a sufficient condition on the coupling constants z± for the existence of a spectral
singularity. Repeating this for all the roots of g (for the cases that (73) has other nonzero
real solutions) we obtain a complete characterization of the spectral singularities. They lie on
a three-dimensional surface S embedded in the four-dimensional space (C2) of the coupling
constants (z−, z+). Figure 1 is a graphical demonstration of the intersection of S with the
plane z+ = z∗

− that represents the PT -symmetric region of C2. In the following we examine
some non-PT -symmetric regions of C2 and their intersection with S.

(1) Consider the plane �1 in C2 defined by z+ = −z∗
− =: z where u = −|z|2 and v = iIm(z).

Then equations (71) and (72) take the form[
1 +

(
Re(z)

k

)2

+

(
Im(z)

k
− 1

)2
]

sin(2ak) = 0 =
(

Im(z)

k
− 1

)
cos(2ak).

These are satisfied if and only if sin(2ak) = 0 and k = |Im(z)|. Therefore, we have a
spectral singularity located at E
 = κ2 = Im(z)2, if and only if

Im(z) = nπ, for some n ∈ Z − {0}. (74)

This shows that �1 intersects S along equidistant lines parallel to the Re(z)-axis in �1.
(2) Consider the case that both z+ and z− are purely imaginary. This also defines a plane in

C2 that we denote by �2. In this case, we can express z± as

z± =:
iy±
a

,

where y± are nonzero real numbers. In terms of y±, equations (71) and (72) take the form(
y+ + y−

2ak
− 1

)
cos(2ak) = 0 =

(
y+ + y−

2ak
− y+y−

2a2k2
− 1

)
sin(2ak).

There are two ways to satisfy these equations. Either
y+ + y−

2ak
− 1 = sin(2ak) = 0, (75)

or

2a2k2 − ak (y+ + y−) + y+y− = cos(2ak) = 0. (76)

We consider these two cases separately.

12
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Figure 2. Curves in the y+-y− plane (�2) along which one has a spectral singularity for purely
imaginary couplings. There are spectral singularities along the y−- and y+-axes. The dashed line
(y+ = −y−) represents the PT -symmetric double-delta-function potential with purely imaginary
couplings. The intersection of these lines with the full curves correspond to the spectral singularities
given by equation (54).

If (75) holds, E
 = κ2 with κ := (y+ + y−)/2a is a spectral singularity provided that

y+ + y− = nπ

2
, n ∈ Z − {0}. (77)

This defines a set of equidistance parallel lines in �2 along which we have spectral
singularities.

If (76) holds, k = κn where κn := (2n + 1)π/(4a) for all n ∈ Z, and

y+ = aκn

(
y− − 2aκn

y− − aκn

)
= (2n + 1)π

2

[
2y− − (2n + 1)π

4y− − (2n + 1)π

]
. (78)

This equation gives the location of another set of spectral singularities, namely E
 = κ2
n ,

in the plane �2.
Figure 2 shows the curves in �2 along which a spectral singularity arises, i.e., �2 ∩S.

(3) Consider the plane �3 in C2 corresponding to z+ = −z− =: z. Then v = 0 and u = −z2.
In particular, Im(u) = −2 Re(z)Im(z). We can confine our attention to the subcase:
Im(u) �= 0, because for Im(u) = 0 either Re(z) = 0, in which case z± are purely
imaginary and the results of the case 2 apply, or Im(z) = 0, in which case the potential is
real and there are no spectral singularities.

In view of v = 0 and (73), g(k) = k(k2 − Re(u)/2). Therefore, k does not have a
real zero and there is no spectral singularities, if Re(u) � 0. For Re(u) > 0, there is a

13
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Figure 3. Curves in the r–s plane along which spectral singularities occur for the coupling
constants with opposite sign. The origin (s = r = 0) does not actually lie on these curves.
The intersection of the curves with the s-axis corresponds to the spectral singularities given by
equation (54). The dashed lines are the lines s = ±r .

spectral singularity at E
 = κ2
± = Re(u)/2, where

κ± := ±
√

Re(u)

2
. (79)

Inserting this equation into (72) gives

Im(u) = ±Re(u) cot(a
√

2 Re(u)). (80)

Introducing the parameter t := a
√

2 Re(u), we can use (80) to obtain the following
parametric equations for the r := aRe(z) and s := aIm(z) values that correspond to the
spectral singularities:

|r(t)| = t

2

√
| csc t | − 1, |s(t)| = t cos t√

| sin t | − sin2 t
. (81)

Figure 3 shows the graph of the parametric curves defined by (81). They form the
intersection of the plane �3 with the singular region S of C2.

(4) Consider the case that z± = (1 + is±)/a with s± ∈ R arbitrary. This corresponds to
another plane in C2 that we denote by �4. Introducing

s := s− + s+

2
, t := 1 + s−s+

2
, (82)

we have

v = 1 + is

a
, u = 1 − t + is

a2
. (83)

14
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Inserting these into (73) yields

a3g(k) = (ak − s)(a2k2 − ask + t) = 0. (84)

Therefore, we need to consider the following two possibilities.
(a) k = s/a = (s− + s+)/(2a). In this case (72) is satisfied automatically while (71)

yields
t = s cot(2s) + 1. (85)

We can use (82) and (85) to express s± in terms of s. This gives

s− = s ∓
√

s2 + 1 − 2(s cot(2s) + 1), (86)

s+ = 2s − s− = s ±
√

s2 + 1 − 2(s cot(2s) + 1). (87)

(b) k �= s/a. Then according to (84),
t = ask − a2k2. (88)

Furthermore, both (71) and (72) become
tan(2ak) + ak = 0. (89)

This equation has a countably infinite set of real solutions κn that can be easily
obtained numerically. Substituting κn for k into (88) and using (82), we find

s− = s ∓
√

s2 + 1 − 2
(
asκn − a2κ2

n

)
, (90)

s+ = 2s − s− = s ±
√

s2 + 1 − 2
(
asκn − a2κ2

n

)
. (91)

Figure 4 shows the parametric plot of the curves in the s− − s+ plane corresponding to the
spectral singularities for both cases 4(a) and 4(b) with a = 1. As seen from this figure,
there are no spectral singularity in the unit-disc defined by s2

− + s2
+ � 1.

3.3. Location of the spectral singularities and the bound states

As we noted in section 2, the spectral singularities are given by the real zeros of M22(k) while
the bound states correspond to the zeros of M22(k) with a positive imaginary part. For the
double-delta function potential, we can write M22(k) = 0 in the following more compact
form:

(K − z−)(K − z+) = z−z+ e2K, (92)

where we have used (38) and introduced

z± := az± = 2mαζ±
h̄2 , K := 2iak.

In particular, the spectral singularities are given by

E
 := − K2

4a2
, (93)

where K is a nonzero solution of (92) lying on the imaginary axis in the complex K-plane, i.e.,

K ∈ � := {w ∈ C | Re(w) = 0 �= w},
whereas the bound state ‘energies’ are given by (93) for solutions K of (92) lying to the left of
this axis, i.e.,

K ∈ �− := {w ∈ C | Re(w) < 0}.
15
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Figure 4. Curves in the s−-s+ plane along which the spectral singularities occur for the coupling
constants of the form z± = 1 + is±. The solid (red) and dashed (blue) curves correspond to the
spectral singularities with k = (s+ +s−)/2 (case 4(a)) and k �= (s+ +s−)/2 (case 4(b)), respectively.
Also shown (in green) is the unit-disc: s2− + s2

+ � 1, where there are no spectral singularities.

For both spectral singularities and bound states, we have Re(K) � 0 which implies
|e2K| � 1. Taking the modulus of both sides of (92), we find

|K − z−||K − z+| � |z+||z−|. (94)

This is violated for any K fulfilling

|K − z−| > |z−| and |K − z+| > |z+|. (95)

Therefore, the solutions of (92) with Re(K) � 0 must belong to the union of the discs

D± := {K ∈ C||K − z±| � |z±|}.
This provides an upper bound on the size of the region in the complex K-plane where bound-
state energies and spectral singularities are located, namely

R�z := (�− ∪ �) ∩ (D+ ∪ D−).

Here we have used the index �z := (z−, z+) to emphasize the z±-dependence of R�z. Figure 5
illustrates the discs D± and the region R�z for a generic choice of z± and also for the case that
z± are real and positive. It is easy to see that in the latter case R�z is empty and there are no
spectral singularities or bound states.

Let Dσ and Dσ be the disc and half-disc defined by

Dσ := {K ∈ C||K| � σ }, Dσ := {K ∈ C||K| � σ, Re(K) � 0.}, (96)

where σ is the largest of 2|z±|, i.e.,

σ := 2 max(|z−|, |z+|). (97)
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Figure 5. (a) Discs D± and Dσ for generic values of z±. The gray area with the origin excluded
is the region R�z where the bound states and spectral singularities are located (if any). ( b) D± for
z± ∈ R+. In this case R�z is empty.

Then, K ∈ Dσ is a weaker necessary condition for the existence of bound states and spectral
singularities. This is simply because D± ⊆ Dσ . See figure 5(a).

Because the spectral singularities and bound states are given by the zeros of

F�z(K) := (K − z−)(K − z+) − z−z+ e2K, (98)

which is an entire (everywhere complex-analytic) function, and these zeros are contained in
Dσ which is a compact subset of the complex K-plane, we can determine the location of
the spectral singularities and bound states using the following well-known result of complex
analysis.

Theorem 1. Let C be a counterclockwise oriented contour bounding a compact and simply-
connected region R in complex plane and h : C → C be a function that is analytic on an open
subset containing R. Then h has a finite number of zeros in R. Moreover, if none of these zeros
lie on C, the contour integral

nC := 1

2π i

∮
C

h′(w)

h(w)
dw (99)

gives the sum of orders of zeros of h contained in R. In particular, if all of these zeros are
simple (of order 1), nC gives their number [36, section 10].

A proper use of this theorem requires a careful analysis of the order of zeros of F�z. It
is not difficult to show that the zeros of F�z can at most be of order 3. Moreover, K is a third
order zero of F�z if and only if K = 0 and

z− = −1 ± i

2
, z+ = 1

2z−
= −1 ∓ i

2
. (100)

This does not correspond to a spectral singularity or a bound state. F�z has a second-order zero
K2 if and only if

17
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Figure 6. (a) c±(ρ±) are rectangular contours of width ε � 1 and height ρ± � σ ; (b) C(ρ, θ)

is the boundary of the region lying between circular arcs of side length ε � 1 and ρ � σ and
opening angle θ ∈ [ε, π − ε].

2z−z+ e1+z−+z+±
√

1+(z−−z+)2 = 1 ±
√

1 + (z− − z+)2, (101)

K2 = 1
2

[
1 + z− + z+ ±

√
1 + (z− − z+)2

]
. (102)

Requiring that Re(K2) � 0, we can use (101) to show that |1 ±
√

1 + (z− − z+)2| � 2|z−z+|.
Therefore, there is no spectral singularity or bound state associated with a second-order zero
of F�z, if for both choices of the sign,∣∣1 ±

√
1 + (z− − z+)2

∣∣ > 2|z−z+|. (103)

This inequality in turn implies the following sufficient condition for the lack of spectral
singularities and bound states associated with a second-order zero of F�z.

|z−z+|(|z−z+| − 1) <
|z− − z+|2

4
. (104)

In particular, such bound states or spectral singularities are forbidden if |z−z+| � 1.
Next, we return to the idea of using theorem 1 for locating the spectral singularities and

bound states. For this purpose we can use the contours C(ρ, θ) and c±(ρ±) depicted in
figure 6 to compute

n±(ρ) := 1

2π i

∮
c±(ρ)

F ′
�z(K)

F�z(K)
dK, (105)

n(ρ−, ρ+) := n−(ρ−) + n+(ρ+), (106)

N(ρ, θ) := 1

2π i

∮
C(ρ,θ)

F ′
�z(K)

F�z(K)
dK, (107)

where ρ, ρ± ∈ [ε, σ ], ε � 1, and θ ∈ [ε, π − ε]. In the generic case where F�z has no second-
order zeros, n±(ρ) and N(ρ, θ) give the number of zeros of F�z enclosed by c±(ρ) and C(ρ, θ),
respectively. Therefore, plotting n(ρ−, ρ+) and N(ρ, θ) as functions of ρ± and (ρ, θ), we can
locate all the spectral singularities and bound states of the double-delta function potential for
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Figure 7. Density plots of N(ρ, θ) for the PT -symmetric case z± = −8 ± 3i (on the left) and the
non-PT -symmetric case z− = −8+3i, z+ = −4−2i (on the right) in the complex K-plane. Kr and
Ki mark the real and imaginary axes. As the color changes from the lightest to the darkest N(ρ, θ)

takes values 0,1 and 2, respectively. The critical points marked by black spots are the K-values
corresponding to bound states. They are symmetric about the Kr -axis for the PT -symmetric case.

given coupling constants z±. In particular, for ε → 0, ntot := n(σ, σ ) and Ntot := N(σ, π −ε)

respectively give the total number of spectral singularities and bound states, except for the
cases that for some imaginary K both K and −K are zeros of F�z. In the latter case, K and −K

give rise to the same spectral singularity, and one must account for the corresponding double
counting in ntot.

Note that locating spectral singularities is most conveniently carried out using (73). In
the absence of an analogous equation giving the k values for the bound states, we use N(ρ, θ)

to locate the latter. Figure 7 shows the density plots of N(ρ, θ) for the PT -symmetric case
z± = −8 ± 3i and the non-PT -symmetric case z− = −8 + 3i, z+ = −4 − 2i. These resemble
the phase diagrams of statistical mechanics where the critical points correspond to the bound
states. As we expect, for the PT -symmetric case the location of these points is symmetric
about the real axis in the complex K-plane.

Figure 8 shows the graphs of N(ρ, π − ε) for the PT -symmetric case z± = −1 ± 8i and
the non-PT -symmetric case z− = −2 + 7i, z+ = −4 − 5i. These show the distance between
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Figure 8. Plots of N(ρ, π − .01) (top figure) and N(σ, θ) (bottom figure) for the PT -symmetric
system defined by z± = −1 ± 8i (the solid curves) and the non-PT -symmetric system defined by
z− = −2+7i and z+ = −4−5i (the dashed curves). For the PT -symmetric model N(ρ, π −0.01)

changes in increments of 2 while N(σ, θ) is symmetric with respect to the θ = π/2 line.

the bound states from the origin. For the PT -symmetric case the bound states are created in
complex-conjugate pairs with the same distance from the origin. This explains the fact that
the number of bound states changes in increments of 2. This is clearly not the case for the
non-PT -symmetric case. For both of the above choices of the coupling constants, σ < 17.
Therefore, the maximum value of each curve gives the total number of bound states for the
corresponding system.

Figure 9 shows a contour plot of Ntot := N(σ, π − ε) for z± = 1 + is± and ε = 10−6 as
functions of s± ∈ R. Although the real part of the coupling constants are positive and equal,
for large enough values of their imaginary part the system develops bound states. This is in
contrast to the single-delta-function potential where there are no bound states for coupling
constants with a positive real part. We also see that in thePT -symmetric case s+ = −s−, which
corresponds to the depicted diagonal line, the number of bound states change in increments of
2. This is consistent with the fact that these are produced in complex-conjugate pairs.

3.4. Real bound states and quasi-Hermiticity

An important feature of the graphical demonstration of the location of spectral singularities
and bound states in the complex K-plane is that for the cases that Re(z±) > 0 and |Im(z±)|
are sufficiently small, the system does not have any spectral singularities or bound states.
Figures 4 and 9 provide a clear demonstration of this phenomenon for the case that
Re(z±) = 1.

The presence of spectral singularities is an obstruction to the quasi-Hermiticity of the
Hamiltonian operator. This is also true for the bound states unless they happen to have real
energies (eigenvalues). We will refer to these bound states as “real bound states’. It is not
difficult to see that generic bound states are not real. In this subsection, we shall first derive
analytic expressions for the existence and location of real bound states and then for fixed and
positive values of Re(z±) we establish the existence of a positive lower bound on the size of a
region in the Im(z−)–Im(z+) plane where the system is free of both the spectral singularities
and bound states. This is a region where the Hamiltonian operator is quasi-Hermitian. It is
in this region that we can employ the machinery of pseudo-Hermitian quantum mechanics
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Figure 9. Contour plot of the number Ntot of bound states located in the region: π/2 + ε �
arg(K) � 3π/2 − ε for z± = 1 + s±i and ε = 10−6. As the color changes from the lightest to the
darkest Ntot take values 0, 1, 2, 3, 4, respectively. The diagonal line s+ = −s− corresponds to the
PT -symmetric region along which the number of bound states changes in increments of 2.

[9, 10] to construct an associated positive-definite metric operator and use the Hamiltonian
operator to define a unitary quantum system.

Excluding the case of a single-delta-function potential [24] where z+z− = 0, we can
express (92) as (

K

z+
− 1

) (
K

z−
− 1

)
= e2K. (108)

According to (93), the real bound states are given by real and negative solutions of (108).
For these solutions the right-hand side of (108) is real, positive and less than 1. Equating the
left-hand side with its complex conjugate yields

Im(z−z+)K = |z−|2 Im(z+) + |z+|2 Im(z−). (109)

In order to explore the consequences of this equation we introduce the notation

r± := Re(z±), s± := Im(z±), (110)

and consider the following cases separately.

(i) Im(z−z+) = 0. In this case,

r−s+ + r+s− = 0,
s−

|z−|2 +
s+

|z+|2 = 0. (111)

Therefore, either both s± vanish and the potential is real or both s± are nonzero. In the
latter case, (111) implies z− = z∗

+. This is the PT -symmetric case for which (92) reduces
to

|K − z+| = |z+| eK. (112)
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Figure 10. Curves in the complex z-plane along which real bound sates exist for z± = ze±iν/2, ν =
π(2n − 1)/20 and n ∈ {1, 2, . . . , 10}. The numbers attached to each curve segment is the
corresponding value of n. r and s respectively mark the Re(z)- and Im(z)-axes. Note that all the
curves have finite length.

Because eK < 1, this equation cannot be satisfied, if Re(z+) � 0. This is consistent with
the results of [28]. Furthermore, for the non-PT cases with real z−z+, such as z− = −z∗

+
or imaginary z± with z− �= z∗

+, there are no real bound states.
(ii) Im(z−z+) �= 0. In this case, we can write (109) as

K = |z−|2 Im(z+) + |z+|2 Im(z−)

Im(z−z+)
. (113)

Substituting this equation into (92) gives a rather complicated relation between z− and z+.
This relation together with the requirement that the right-hand side of (113) be negative
provide the necessary and sufficient condition for the existence of real bound states for
non-PT -symmetric cases. We have implemented this condition to address the existence
of real bound states for the special cases where z+ = z−eiν := z eiν/2 with ν ∈ [0, 2π).
Figure 10 shows the curves in the complex z-plane along which real bound states exist
for various values of ν. It is important to note that all these curves are finite in length.
Therefore, there are no real bound states for sufficiently large values of |z|.
Next, we wish to show the existence of regions in the space of the coupling constants z±

where there are no spectral singularities or bound states. Our main tools are the following
basic theorems of real and complex analysis.

Theorem 2. Let n ∈ Z+,D be a compact subset of Rn with its standard topology, and
ϕ : Rn → R be a function that is continuous on D. Then {ϕ(�x)

∣∣�x ∈ D} has both a minimum
and a maximum [37, section 8].
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Theorem 3 (Maximum modulus theorem). Let C be a contour bounding a compact and
simply-connected subset R of the complex plane and h : C → C be a function that is
analytic on an open subset containing R. Then {|h(w)|∣∣w ∈ R} attains its maximum on C,
[38, section III.1].

First, we use theorem 3 to prove the following preliminary results.

Lemma 1. Let Dρ denote the following half-disc of radius ρ ∈ R+:

Dρ := {K ∈ C | |K| � ρ, Re(K) � 0},
and L : C → C be the function defined by

L(K) :=
⎧⎨
⎩

1 − e2K

K
for K �= 0,

−2 for K = 0.

(114)

Then |L| attains its maximum value on Dρ at K = 0, i.e., 2 = |L(0)| is the maximum of
Aρ := {|L(K)| |K ∈ Dρ} for all ρ ∈ R+.

Proof. First, consider the case ρ < 1. Then Dρ � D1, which implies Aρ ⊆ A1. Therefore,
the maximum of Aρ is less than or equal to that of A1. This shows that it is sufficient to
prove the lemma for the case ρ � 1. Because L is an entire function and Dρ is compact,
according to theorem 3, Aρ has a maximum that is located on the boundary of Dρ . This
is the union of the closed line segment �ρ := {iy|y ∈ [−ρ, ρ]} and the open semicircle
Cρ := {iρ eiϕ|ϕ ∈ (0, π)}. The maximum of Aρ is the largest of the values taken by |L| on �ρ

and Cρ . We will show that these values are bounded from above by 2. Because 0 ∈ Dρ and
|L(0)| = 2, this is sufficient to prove the lemma. In the following we consider the values of
|L| on �ρ and Cρ separately.

• For all K ∈ �ρ , we can write K = iy for some y ∈ [−ρ, ρ]. Inserting K = iy into (114)
and computing the modulus of both sides of the resulting expression yields

|L(K)| = 2 sin y

y
� 2. (115)

• For all K ∈ Cρ , we can write K = iρ eiϕ for some ϕ ∈ (0, π). Because ρ � 1 and
sin ϕ > 0, (114) implies

|L(K)| = |1 − exp(2iρ eiϕ)|
ρ

� 1 + | exp(2iρ eiϕ)| = 1 + e−2ρ sin ϕ < 2. (116)

This together with (115) proves the lemma for ρ � 1. As we explained above this
establishes the statement of the lemma also for the case ρ < 1. �

Lemma 2. Suppose that r± > 0. Then K = 0 is a first-order zero of the function F�z defined
by (98).

Proof. Recall that the zeros of F�z are at most of order 3 and F�z(0) = 0. Therefore, it is sufficient
to show that K = 0 is not a second- or third-order zero of F�z. Assume (by contradiction) that
K = 0 is a second-order zero of F�z. Then F ′

�z(0) = 0, i.e., z− + z+ + 2z−z+ = 0. Equivalently,
we have

r+ + r− + 2(r−r+ − s−s+) = 0, s+ + s− + 2(r−s+ + r+s−) = 0.

Solving the second of these for s− and inserting the result into the first, we find

r+ + r− + 2r−r+ +
2(1 + 2r−)s2

+

1 + 2r+
= 0.
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But this equation cannot be satisfied for r± > 0. This shows that the above assumption is false
and K = 0 is not a second-order zero of F�z. Next, we recall that K = 0 is a third-order zero
of F�z if and only if (100) hold. But these conflict with the condition r± > 0. Hence K = 0 is
not a third-order zero of F�z. �

Next, we use theorem 2 and lemmas 1 and 2 to prove the following desired result.

Theorem 4. Suppose that r± > 0 and |s±| < rmax := max(r−, r+). Then there is a positive
upper bound B�r on |s±| such that for all s± satisfying |s±| < B�r , the Hamiltonian (3) does not
have any spectral singularities or bound states8.

Proof. Recall that spectral singularities and bound states are zeros K of F�z with Re(K) � 0
and that they belong to Dσ , where σ := 2max(|z−|, |z+|). The latter is a subset of the half-disc

D := D√
8rmax

= {K ∈ C||K| �
√

8 rmax, Re(K) � 0},
because in view of r± � rmax and |s±| < rmax, we have σ <

√
8 rmax. According to lemma 2,

K = 0 is a first-order zero of F�z. This implies that the function G�z : C → C defined by

G�z(K) :=
{

K−1F�z(K) for K �= 0,

F ′
�z(0) for K = 0

(117)

is an entire function and G�z(0) �= 0. Furthermore, the spectral singularities and bound states
of the Hamiltonian (3) correspond to the zeros K0 of G�z lying in D. Another important
observation is that G�r has no zeros K with Re(K) � 0, because if they existed these zeros
would have corresponded to the spectral singularities or bound states of the Hamiltonian (3)
with real and positive coupling constants (z± ∈ R+). But as we argued above this Hamiltonian
does not have any spectral singularities or bound states. This observation establishes the fact
that

G�r (K) �= 0, for all K ∈ D. (118)

Because G�r is an entire function, |G�r | is continuous on D which is a compact subset of
C = R2. In view of theorem 2, this implies that the set {|G�r (K)| | K ∈ D} has a minimum
m�r , i.e., there is Kmin ∈ D such m�r = |G�r (Kmin)|. Because K0,Kmin ∈ D and (118) holds, we
have

0 < |G�r (Kmin)| = m�r � |G�r (K0)|. (119)

Next, we introduce J�z : C → C as the function defined by

J�z(K) := G�z(K) − G�r (K). (120)

Because G�z(K0) = 0, we have

|J�z(K0)| = |G�r (K0)|. (121)

Furthermore, in view of (117), (120), (114), and the fact that K0 �= 0,

J�z(K0) = −i(s− + s+) + [−s−s+ + i(r−s+ + r+s−)]L(K0). (122)

This implies

|J�z(K0)| � |s−| + |s+| + (|s−||s+| + |r−||s+| + |r+||s−|)|L(K0)|
� 2 (3rmax + 1) smax, (123)

where smax := max(|s−|, |s+|) and we have used the triangular inequality, the condition
|s±| � rmax, and |L(K0)| � 2 that follows from lemma 1.

8 Here and in what follows �r := (r−, r+).
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Figure 11. Plots of |G�r (γ�r (t))| (the full curve) and |L(γ�r (t))| (the dashed curve) as a function of
t ∈ [−1, 1]. t− ≈ −0.949 and t+ ≈ −0.051 are the minimum points of |G�r (γ�r (t))| corresponding
to K± ≈ ±1.795i. These give the minimum value m�r ≈ 1.906. The maximum value of |L(γ�r (t))|
is 2 that is attained at t0 = −0.5 corresponding to K = 0.

If we combine (123) with (121) and (119), we obtain

0 <
m�r

2(3rmax + 1)
� smax. (124)

This inequality is violated for the values of s± for which

|s±| <
m�r

2(3rmax + 1)
=: B�r . (125)

Therefore, for the cases that |s±| < B�r the existence of K0 leads to a contradiction; such a K0

cannot exist; and there are no spectral singularities or bound states. �

The upper bound B�r given in (125) involves the minimum m�r of |G�r | on the half-disc D.
Because G�r is a nowhere-zero analytic function on D, 1/G�r is also analytic on D. Hence,
according to theorem 3, 1/|G�r | attains its maximum M�r on the boundary of D. It is not
difficult to see that m�r = 1/M�r . Therefore, in practice, for given values of r±, we can obtain
m�r by exploring the values of |G�r | on the boundary of D.

We can identify the boundary of D with the graph ��r of the parameterized curve:

γ�r (t) := 2irmax[(2t + 1)�(−t) + eiπt�(t)], t ∈ [−1, 1], (126)

where � is the unit step function: �(0) := 1/2 and �(t) := (1 + t/|t |)/2 for t �= 0. Figure 11
shows the graphs of |G�r (γ�r (t))| and |L(γ�r (t))| for the case r± = 1 that is considered in
figures 4 and 9. In this case, rmax = 1 and D is the half-disc of radius 2 lying in �−. As
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seen from the graph of values of |L|, it attains its maximum at t = −0.5 (corresponding to
K = 0) and its maximum value is 2. This is consistent with the statement of lemma 1. The
minimum points of |G�r | are located at t = −0.949 and t = −0.051. These correspond to
Kmin ≈ ±1.795i where |G�r | takes its minimum value: m�r ≈ 1.906. According to (125), this
gives B�r = m�r/8 ≈ 0.238. Therefore, for z± = 1 ± is± with |s±| < 0.238 there should be no
spectral singularities or bound states. This is in complete agreement with the graphical data
depicted in figures 4 and 9; the disc with center s± = 0 and radius 0.238 lies in the region with
no spectral singularities or bound states.

4. Concluding remarks

In this paper we provided an explicit demonstration of how spectral singularities obstruct the
existence of a biorthonormal eigensystem and render the Hamiltonian non-diagonalizable. We
achieved this by obtaining a characterization of spectral singularities in terms of the M22 entry
of the matrix M of equation (20). In particular we showed that while bound states are zeros
of M22(k) with Im(k) > 0, the spectral singularities are the real zeros of M22(k). It is not
difficult to infer from this observation that, similar to the bound states, the spectral singularities
are linked with singularities of the scattering matrix [19]. However, unlike the bound states,
they lie on the real axis in the complex k-plane. This in turn suggests interpreting spectral
singularities as resonances having a vanishing width. Reference [19] provides a thorough
description of this interpretation and its physical implications.

We established the utility of our general results by providing a thorough analysis of the
spectral properties of a two-parameter family of complex point interactions. We obtained
various results on the nature and location of the bound states and spectral singularities for
this family and proved the existence of regions in the space of coupling constants where both
bound states and spectral singularities are lacking and the Hamiltonian is quasi-Hermitian.

Throughout our study we examined the consequences of imposing PT -symmetry which
corresponds to restricting the coupling constants to a complex plane in the space C2 of coupling
constants. This revealed a previously unnoticed fact that PT -symmetric double-delta function
potential can involve spectral singularities.

The results of this paper may be extended to complex point interactions corresponding
to three or a larger number of delta-function potentials. Another line of research is to try
to compute a metric operator η+ and the corresponding equivalent Hermitian Hamiltonian h
and the pseudo-Hermitian position and momentum operators X and P for the double-delta
function potential whenever the Hamiltonian is quasi-Hermitian. Theorem 4 provides the
mathematical basis for a perturbative calculation of η+, h,X and P. We plan to report the
results of this calculation in a forthcoming publication.
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